Silylcarbocyclizations of 1,6-Diynes

Iwao Ojima,* Jiawang Zhu, Ephraim S. Vidal, and Dora Fracchiolla Kass
Contribution from the Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400

Received March 17, 1998

Abstract

Two types of silylcarbocyclization reactions (SiCaCs) of 1,6-diynes are discussed: (i) silylcarbo-cyclization-hydrosilylation ($\mathrm{SiCaC}-\mathrm{HS}$) reactions giving 3-(silylmethylene)-4-(silylmethyl)pyrrolidine, 3-(si-lylmethylene)-4-(silylmethyl)tetrahydrofuran, 3,4-bis(silylmethyl)-3-pyrroline, and 1,2-bis(silylmethyl)-4,4dicarbethoxycyclopentene; and (ii) silylcarbobicyclization (SiCaB) reactions yielding a variety of carbocyclic and heterocyclic bicyclo[3.3.0] systems. Mechanisms for these $\mathrm{SiCaC}-\mathrm{HS}$ and SiCaB processes are proposed.

Introduction

Transition-metal-catalyzed carbocyclization of alkenes and alkynes serves as an important and efficient reaction for the syntheses of a variety of carbocyclic and heterocyclic compounds. ${ }^{1}$ We have been exploring the scope of the siliconinitiated carbometalation processes such as silylformylations, ${ }^{2-7}$ silylcyclocarbonylation (SiCCa), ${ }^{8}$ and silylcarbocyclizations (SiCaCs). ${ }^{9-12}$ In the course of our study on the SiCaC reaction of 1,6-diynes, we discovered a novel catalytic synthesis of bicyclo[3.3.0]octenones through silylcarbobicyclization (SiCaB) reaction. ${ }^{1 \text { la }}$ We also found the SiCaB reaction of 1,6 -heptadiynes yielding bicyclo[3.3.0]octa-1,5-dien-3-ones bearing a rare cyclopentanoid skeleton. ${ }^{13}$ Although transition-metal-mediated

[^0]or -catalyzed carbocyclizations of dienes and enynes have been extensively studied, only a few metal systems using palladium or nickel complexes can catalytically afford exo-methylenecyclopentanes, bis(exo-methylenecyclopentane)s, and related compounds. ${ }^{1}$ We describe here a novel silylcarbocyclizationhydrosilylation ($\mathrm{SiCaC}-\mathrm{HS}$) reaction of 1,6 -diynes as well as a full account of the SiCaB reaction of 1,6-diynes giving carboand heterobicyclo[3.3.0]octenone systems catalyzed by Rh and $\mathrm{Rh}-\mathrm{Co}$ complexes. The products of these reactions serve as useful intermediates for cyclopentanoids, oxygen and nitrogen heterocycles, and alkaloids.

Results and Discussion

Silylcarbocyclization-Hydrosilation Reaction. SiCaCHS reaction of dipropargylamines 1 catalyzed by rhodium complexes under ambient pressure of carbon monoxide gives 3-(silylmethylene)-4-(silylmethyl)pyrrolidine (3) and 3,4-bis-(silylmethyl)-3-pyrroline (4) in fairly good yields (Scheme 1). Results are summarized in Table 1. The reaction of benzyldipropargylamine (1a) with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (4 equiv) in the presence of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}, \mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$, or $(t-\mathrm{BuNC})_{4} \mathrm{RhCo}(\mathrm{CO})_{4}(2$ $\mathrm{mol} \%$) at $65^{\circ} \mathrm{C}$ for 10 h afforded 1-benzyl-3-(TBS-methylene)-4-(TBS-methyl)pyrrolidine (3a-TBS) (TBS $=$ tert-butyldimethylsilyl) as the major product and 3,4-bis(TBS-methyl)-1-benzyl-3-pyrroline ($\mathbf{4 a - 1}$) as the minor product in $61-67 \%$ isolated yield. When HSiEt_{3} (4 equiv) was used, the reaction of $\mathbf{1 a}$ catalyzed by $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$ gave 3a-TES (57\%) and 4aTES $(11 \%)($ TES $=$ triethylsilyl). In a similar manner, the reaction of n-hexyldipropargylamine ($\mathbf{1 b}$) with HSiEt_{3} catalyzed by $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$ gave 3b-TES and 4b-TES (83:17) in 76\% yield. It should be noted that the same reactions under nitrogen atmosphere proceed sluggishly to give the same products in very low yields. This fact indicates that a carbon monoxide atmosphere is crucial to generate active catalyst species in the $\mathrm{SiCaC}-H S$ reaction.

The reaction of allyldipropargylamine (1c) with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (4 equiv) catalyzed by $\operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ afforded 3c-TBS (64\%) and $\mathbf{4 c}$-TBS (12%). Thus, the intramolecular carbometalation takes place exclusively with the alkyne moiety, and the alkene moiety is intact; that is, this is an extremely chemoselective process. The use of HSiEt_{3} and $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ as the catalyst gave 3c-TES as the sole product in 64% yield. This reaction was
(13) Ojima, I.; Kass, D. F.; Zhu, J. Organometallics 1996, 15, 5191.

Table 1. SiCaC-HS Reaction of Dipropargylamines (1)

entry	sub- strate	R	catalyst	R^{\prime}	$\mathrm{R}^{\prime \prime}$	yield (\%)	product ratio 3:4
1	1 a	PhCH_{2}	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$	t-Bu	Me	64	76:24
2	1a	PhCH_{2}	$\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$	t-Bu	Me	61	72:28
3	1a	PhCH_{2}	$\left({ }^{(} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}$	t-Bu	Me	67	79:21
4	1a	PhCH_{2}	$\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$	Et	Et	68	84:16
5	1b	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$	Et	Et	76	83:16
6	1b	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$	t-Bu	Me	60	0:100
7	1c	allyl	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$	$\mathrm{t}-\mathrm{Bu}$	Me	21	100:0
8	1c	allyl	$\mathrm{Rh}_{4}(\mathrm{CO})_{12}$	Et	Et	74	0:100

Scheme 1

3
$+$

4

R: (a) PhCH_{2}, (b) n-hexyl, (c) allyl
Catalyst: $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}, \mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12},\left({ }^{\mathrm{H}} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}, \mathrm{Rh}_{4}(\mathrm{CO})_{12}$
communicated by us earlier. ${ }^{9}$ However, the careful reinvestigation of the structural assignment of the product revealed that the correct structure of the product should have been 3c-TES as shown in Scheme 1. ${ }^{14}$

The proposed mechanism of the $\mathrm{SiCaC}-\mathrm{HS}$ reaction is illustrated in Scheme 2. Oxidative addition of a hydrosilane to the rhodium catalyst species formed a silylrhodium species, $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime}{ }_{2} \mathrm{Si}-[\mathrm{Rh}]$ (I). The insertion of an acetylene moiety of $\mathbf{1}$ gives a β-silylvinyl-[Rh] species (II), which undergoes intramolecular carbometalation, that is, carbocyclization, to the other acetylene moiety, yielding a pyrrolidine-exo-1,3-dienyl-[Rh] species (III). Reductive elimination of III regenerates the silyl[Rh] species (I) and affords 3-(silylmethylene)-4-methylenepyrrolidine (2). The subsequent regioselective 1,2 -hydrosilylation of $\mathbf{2}$ affords $\mathbf{3}$, while the regioselective 1,4-hydrosilylation gives 4.

A proposed intermediate 2 was indeed isolated in an experiment using <1 equiv of a hydrosilaneto $\mathbf{1}$ otherwise under the standard conditions; that is, the reaction of $\mathbf{1 b}$ with $\mathrm{HSiMe}_{2^{-}}$ Bu^{t} (0.8 equiv) catalyzed by $\operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ afforded $\mathbf{2 b}$-TBS (17% isolated yield) and its aromatized isomer 5b-TBS (34\% isolated yield) (Scheme 3). The stereochemistry of the exosilylmethylene moiety of $\mathbf{2 b}$-TBS was elucidated on the basis of 1D difference NOE as well as 2D NOESY. Under the standard reaction conditions using 4 equiv of hydrosilane, the formation of pyrrole $\mathbf{5 b} \mathbf{- T B S}$ was never observed. Thus, the formation of $\mathbf{5 b} \mathbf{- T B S}$ can be ascribed to the isomerization of the two exo-methylenes to the energetically favorable pyrrole under the given reaction conditions. This isomerization process is completely blocked by the hydrosilylation under the standard

[^1]
Scheme 2

Scheme 3

Scheme 4

conditions, that is, in the presence of excess hydrosilane. In fact, when $\mathbf{2 b}$-TBS was treated with catalytic amounts of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ (0.02 equiv) and $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (0.02 equiv) at 80 ${ }^{\circ} \mathrm{C}$ under carbon monoxide atmosphere, pyrrole $\mathbf{5 b}$-TBS was formed in quantitative yield (Scheme 4).

Since we were able to isolate $\mathbf{2 b} \mathbf{- T B S}$, a control experiment was carried out to confirm the intermediacy of $\mathbf{2}$ in the formation of hydrosilylation product $\mathbf{4 b}$-TBS (see entry 6 in Table 1). Thus, the reaction of $\mathbf{2 b} \mathbf{- T B S}$ with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (2 equiv) in the presence of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(2 \mathrm{~mol} \%)$ in toluene at $65^{\circ} \mathrm{C}$ and ambient pressure of CO overnight gave a mixture of $\mathbf{4 b} \mathbf{b}$ TBS and 1-n-hexyl-3-(TBS-methyl)-4-methylpyrrole (5b-TBS) in 34 and 33% isolated yields, respectively. When the reaction was run by premixing $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}, \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$, and $\mathbf{1 b}$ in toluene at $65^{\circ} \mathrm{C}$ for 3 h , followed by addition of $\mathbf{2 b} \mathbf{- T B S}$, and stirring the mixture for $18 \mathrm{~h}, \mathbf{4 b}-\mathbf{T B S}$ was isolated as the major product
(54% isolated yield) together with $\mathbf{5 b}$-TBS (17% isolated yield) (Scheme 5). Accordingly, the intermediary of $\mathbf{2}$ in the $\mathrm{SiCaC}-$ HS process is unambiguously established.

The $\mathrm{SiCaC}-\mathrm{HS}$ reaction of dipropargyl ether (6) with $\mathrm{HSiMe}^{2} \mathrm{Bu}^{\mathrm{t}}$ (4 equiv) catalyzed by $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ under the standard conditions gave 3-(TBS-methylene)-4-(TBS-methyl)tetrahydrofuran (7) exclusively, but in low yield (eq 1). The observed low yield can be ascribed to a rather facile $\mathrm{O}-\mathrm{C}$ bond cleavage in a propargyl ether under the reaction conditions. On the other hand, the reaction of diethyl dipropargylmalonate (8a) at $110^{\circ} \mathrm{C}$ afforded 1,2-bis(silylmethyl)-4,4-dicarbethoxycyclo-pent-1-ene (9a) as the sole product in good yield (eq 2).

These results indicate that the C-4 position of the 1,6-diynes exerts marked influence on the product distribution; that is, the 1,2-hydrosilylation is favored with substrates with heteroatoms at the C-4 position, whereas 1,4-hydrosilylation is favored with 4,4-gem-disubstitution with ester groups.

Silylcarbobicyclization Reaction. As described above, under ambient carbon monoxide pressure, SiCaC reaction of a 1,6-diyne readily occurs without carbonylation, followed by hydride shift to form a bis(exo-methylene)hetero- or carbocycle such as 2 as the intermediate. The subsequent regioselective 1,2- and/or 1,4-hydrosilylation of this intermediate gives Si-$\mathrm{CaC}-\mathrm{HF}$ products, 3, 4, 7, and 9. Under high pressure of carbon monoxide ($15-50 \mathrm{~atm}$), however, carbonylative carbocyclization takes place to afford bicyclo[3.3.0]octenones in excellent yields. Thus, benzyldipropargylamine (1a) underwent silylcarbobicylization (SiCaB) with HSiEt_{3} (1.6 equiv) in the presence of a catalytic amount of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ at $65^{\circ} \mathrm{C}$ and 50 atm of CO for 10 h to give a mixture of 2-TES-7-benzyl-7-azabicyclo[3.3.0]octa-5,8-dien-3-one (10a-TES) as the major product and 2-TES-7-benzyl-7-azabicyclo[3.3.0]oct-1-en-3-one (11a-TES) as the minor product (10a-TES/11a-TES $=97: 3$) in 66% isolated yield (eq 3).

In a similar manner, the reaction of $\mathbf{1 a}$ with HSiEt_{3} catalyzed by ($\left.{ }^{(\mathrm{BuNC}}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}$ afforded 10a-TES (57\%) and 11a-TES (10%) and the reaction of $\mathbf{1 a}$ with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{t}$ catalyzed by $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ afforded 2-TBS-7-benzyl-7-azabicyclo[3.3.0]-octa-5,8-dien-3-one (10a-TBS) (70\%) and 2-TBS-7-benzyl-7-azabicyclo[3.3.0]oct-1-en-3-one (11a-TBS) (18\%). The reaction of $\mathbf{1 c}$ with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ also gave 2-TBS-7-allyl-7-azabicyclo-

Scheme 5

[3.3.0] octa-5,8-dien-3-one (10c-TBS) (56\%) and 2-TBS-7-allyl-7-azabicyclo[3.3.0]oct-1-en-3-one (11c-TBS) (22\%). It should be noted that the allyl moiety of 1c remained intact, which indicates extremely high chemoselectivity of this reaction.

However, the reaction of dipropargyl- n-hexylamine (1b) catalyzed by $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ under the same conditions gave 7-azabicyclo[3.3.0]octa-5,8-dien-3-one (10b-TES) exclusively in 58% isolated yield (eq 3). In a similar manner, the reaction of $\mathbf{1 c}$ with HSiEt_{3} catalyzed by $\left({ }^{(} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}$ afforded 11c-TES as the sole product in 62% isolated yield. This reaction was communicated by us earlier. ${ }^{9}$ However, careful reinvestigation of the structural assignment of the product revealed that the correct structure of the product should have been $\mathbf{1 1 c - T E S}$ as shown in eq $3 .{ }^{14}$

We have reported that a mixture of 10a-TBS (67\%) and 11aTBS (11\%) was obtained when this reaction was carried out at $120{ }^{\circ} \mathrm{C} .{ }^{13}$ Accordingly, it is strongly indicated that (i) 2a-TBS is the precursor of bicyclic pyrrole 10a-TBS and (ii) the doublebond isomerization takes place because of the energy gain due to aromatization.

When the reaction of $\mathbf{1 a}$ with HSiEt_{3} was carried out using $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$ as the catalyst under the same conditions, the formation of a small amount of 4-TES-7-benzyl-7-azabicyclo-[3.3.0]oct-1-en-3-one (12a-TES) was observed in addition to 10a-TES and 11a-TES (eq 4).

Reaction temperature has a certain influence on the course of the reaction as well. When the reaction of $\mathbf{1 a}$ with $\mathrm{HSiMe}_{2^{-}}$ Bu^{t} was catalyzed by $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$ or ($\left.{ }^{\mathrm{t}} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}$ at $50{ }^{\circ} \mathrm{C}$ instead of $65^{\circ} \mathrm{C}$, a small amount of 2-TBS-7-benzyl-7-azabicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (13a-TBS) was formed in addition to 11a-TBS (60% isolated yield) (eq 5).

The $\Delta^{1,5}$-isomer 13a-TBS can be easily isomerized to the thermodynamically more favorable 11a-TBS. Thus, the treatment of the mixture of 11a-TBS and 13a-TBS with $\mathrm{RhCl}_{3} \cdot$ $3 \mathrm{H}_{2} \mathrm{O}$ in EtOH at $50^{\circ} \mathrm{C}$ gave 11a-TBS as the sole product in 70% isolated yield (eq 5).

In a manner similar to the reaction of $\mathbf{1 a}$ (eq 5), the reaction of dipropargyl ether (6) with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (1.6 equiv) catalyzed

Table 2. SiCaB Reaction of 1,6-Heptadines (8)

entry	sub- strate	R^{1}	R^{2}	temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{CO} \\ (\mathrm{~atm}) \end{gathered}$	time (h)	yield a (\%)	product 16	$\begin{gathered} \text { ratio } \\ \mathbf{1 7} \end{gathered}$
1	8a	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Et}$	50	15	12	92 (98)	100	0
2	8b	$\mathrm{CO}_{2} \mathrm{Et}$	Me	50	50	20	70	100	0
3	8 c	$\mathrm{CO}_{2} \mathrm{Et}$	H	50	50	12	65	74	24
4	8d	AcOCH_{2}	H	120	50	20	73	100	0

${ }^{a}$ The value in the parentheses is determined by GC analysis.

Scheme 6

(a) $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}$; (b) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}$;
(c) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$; (d) $\mathrm{R}^{1}=\mathrm{AcOCH}_{2}, \mathrm{R}^{2}=\mathrm{H}$
by $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ under the standard conditions gave 2-TBS-7-oxabicyclo[3.3.0]oct-1-en-3-one (14) (22\%) and 2-TBS-7-oxabicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (15) (27\%) (eq 6).

No formation of a bicyclic furan, which is equivalent to $\mathbf{1 0}$, was observed at all. As mentioned for the $\mathrm{SiCaC}-\mathrm{HS}$ reaction of $\mathbf{6}$, the lower yield in this reaction can be ascribed to a rather facile $\mathrm{C}-\mathrm{O}$ bond fission of $\mathbf{6}$ under the reaction conditions.

Next, the SiCaB reactions of 1,6 -heptadienes $\mathbf{8}$ were investigated. The results are summarized in Table 2. In contrast to the cases of dipropargylamines $\mathbf{1}$ and dipropargyl ether (6), the reaction of diethyl dipropargylmalonate (8a) with $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ (2 equiv) catalyzed by $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$ or $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ at 50 ${ }^{\circ} \mathrm{C}$ and 15 atm of CO for 12 h gave 2-TBS-7,7-dicarb-ethoxybicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (16a) (Scheme 6) exclusively in 92% isolated yield (98% GC yield) (Table 2, entry 1). ${ }^{15}$ The reaction under 50 atm of CO gave the same result. In a manner similar to the case of 13a-TBS (eq 5), 16a thus formed was readily isomerized to 2-TBS-7,7-dicarbethoxybicyclo-[3.3.0]oct-1-en-3-one (17a) in quantitative yield in the presence of a catalytic amount of $\mathrm{RhCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in EtOH at $50{ }^{\circ} \mathrm{C}$ for 24 h .

Bicyclo[3.3.0]octenones, very useful intermediates for a variety of biologically active cyclopentanoids, can be obtained through $\mathrm{Co}_{2}(\mathrm{CO})_{8}$-promoted Pauson-Khand reaction ${ }^{16-20}$ and

[^2]Scheme 7

$+$

i. $\mathrm{HSiMe}_{2} \mathrm{Bu}^{t}, \mathrm{CO}(50 \mathrm{~atm}), \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}, 50^{\circ} \mathrm{C}$, toluene ii. $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}$, toluene- EtOH
via zirconocene- ${ }^{21}$ or titanocene-mediated carbobicyclizationcarbonylation of enynes. ${ }^{22}$ However, these processes are basically stoichiometric, and only recently was a catalytic version of Pauson-Khand reaction developed. ${ }^{23}$ Catalytic titanocene-promoted carbobicyclization-carbonylation of enynes was reported. ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ Although an isocyanide was needed as a carbonyl synthon (hydrolysis is required to obtain ketone functionality) in the original process, new processes using CO were recently develped. ${ }^{24 \mathrm{c}, 24 \mathrm{~d}}$ Nickel(0)-promoted stoichiometric carbobicyclization-carbonylation also requires isocyanides as a carbonyl synthon. ${ }^{\text {lc }}$ An efficient Pd-catalyzed carbonylative bicyclization of enynes bearing allylic acetate moieties has also been reported. ${ }^{25}$ The SiCaB reaction provides bicyclo[3.3.0]octenones from 1,6-diynes (not 1,6-enynes) in truly catalytic manner. In this respect, SiCaB is a very unique carbonylative bicyclization process having a high potential as a useful synthetic method that may well complement other existing methods.
It was found that $\left({ }^{(} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ are active but $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{Ru}_{3}(\mathrm{CO})_{12}$, and $\mathrm{PdCl}_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ were inactive for this reaction. The relative activities of rhodium complexes were found to be $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12} \sim$ $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}>\mathrm{Rh}\left(\mathrm{CN}-\mathrm{Bu}^{\mathrm{t}}\right)_{4} \mathrm{Co}(\mathrm{CO})_{4} \gg\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$. For the reaction medium, toluene, ether, hexane, acetonitrile, and dioxane can be used, but the reactions in THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ did not show any conversion under the standard conditions at 12 h reaction period, that is, at $50^{\circ} \mathrm{C}$ and 50 atm of CO , using $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ as the catalyst.

In a similar manner, the reaction of $\mathbf{8 b}$ gave 2 -TBS-7-carbethoxy-7-methylbicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (16b) in 70% isolated yield as a 1:1 mixture of two diastereomers (Table 2 , entry 2), which was quantitatively isomerized to the corresponding bicyclo[3.3.0]oct-1-en-3-one 17b in the presence of a catalytic amount of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

The reaction of 4-carbethoxy-1,6-heptadiyne (8c) gave a mixture of 2-TBS-7-exo-carbethoxybicyclo[3.3.0]oct-1-en-3-one

[^3]
Scheme 8

$\mathrm{X}=\mathrm{PhCH}_{2} \mathrm{~N}$, n-hexyl-N, allyl-N, O, $\left(\mathrm{EtO}_{2} \mathrm{C}\right)_{2} \mathrm{C},\left(\mathrm{EtO}_{2} \mathrm{C}\right) \mathrm{MeC},\left(\mathrm{EtO}_{2} \mathrm{C}\right) \mathrm{HC}$
$[\mathrm{M}]=\left[\mathrm{Rh}_{\mathrm{n}}(\mathrm{H})\right]$ or $[\mathrm{RhCo}(\mathrm{H})]$
$\mathrm{SiR}_{3}=\mathrm{SiMe}_{2} \mathrm{Bu}^{\dagger}$ or SiEt_{3}
(17c-A) (48% isolated yield) as single stereoisomer and its $\Delta^{1,5_{-}}$ isomer 16c (17\% isolated yield) (Table 2, entry 3) (Scheme 7). The isomerization of $\mathbf{1 6 c}$ by the catalysis of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave the corresponding 7 -endo-carbethoxybicyclo[3.3.0]oct-1-en-3one $\mathbf{1 7} \mathbf{c}-\mathrm{B}$ as single stereoisomer in quantitative yield, which is the other diastereomer of $\mathbf{1 7 c} \mathbf{- A}$ (Scheme 6). The results clearly indicate that the SiCaB reaction yielding $17 \mathrm{c}-\mathrm{A}$ is stereospecific and the isomerization of $\mathbf{1 6 c}$ to $\mathbf{1 7} \mathbf{c}-\mathrm{B}$ is extremely stereoselective.

The stereochemistries of $\mathbf{1 7} \mathbf{c}-\mathbf{A}$ and $\mathbf{1 7 c - B}$ were unambiguously determined by ${ }^{1} \mathrm{H}$ NMR analyses on coupling constants and molecular modeling (MACROMODEL). According to MM2 calculations, $\mathbf{1 7} \mathbf{c}-\mathbf{B}$ is $\sim 3.3 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{1 7} \mathbf{c}-\mathbf{A}$, which means $\mathbf{1 7} \mathbf{c}-\mathbf{A}$ should be the kinetic product. However, when the crude reaction mixture of $\mathbf{1 7 c}-\mathbf{A}$ and $\mathbf{1 6 c}$ was subjected to the isomerization conditions, the endo-isomer $\mathbf{1 7} \mathbf{c}-\mathbf{A}$ remained unchanged; that is, only $\mathbf{1 6 c}$ was converted to $\mathbf{1 7} \mathbf{c}-\mathbf{B}$. Thus, the isomerization of $\mathbf{1 7} \mathbf{c}-\mathbf{A}$ to $\mathbf{1 7} \mathbf{c}-\mathbf{B}$ was not observed. A possible stereoselective formation of $\mathbf{1 7 c} \mathbf{c} \mathbf{A}$ or $17 \mathrm{c}-\mathrm{B}$ warrants further investigation.

The reaction of 4-(acetoxymethyl)-1,6-heptadiyne (8d) at 120 ${ }^{\circ} \mathrm{C}$ gave a $1: 1$ mixture of 7-exo- and 7-endo-2-TBS-7-(acetoxymethyl)bicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (25) in 73% isolated yield (Table 2, entry 4). It should be noted that 7,7disubstituted 2-silylbicyclo[3.3.0]octa-1,5-dien-3-ones are usually formed under these conditions when using 4,4-disubstituted 1,6 -heptadienes, whereas the reaction of $\mathbf{8 d}$ does not give any trace of the corresponding bicyclo[3.3.0]octa-1,5-dien-3-one. As described above, the nature of the functional group(s) at the C-4 position of 1,6-diynes exerts marked effects on the product selectivity in the SiCaB reaction. Thus, further study on the effects of the C-4 functional group(s) on the course of the reaction is clearly warranted.

A mechanism for the formation of the three kinds of bicyclo[3.3.0] systems is proposed in Scheme 8. The intermediate III
is formed through extremely regioselective insertion of one of the acetylene moiety of $\mathbf{1}$ to $\mathrm{R}_{3} \mathrm{Si}-[\mathrm{M}]$ species $\left([\mathrm{M}]=\left[\mathrm{Rh}_{n}(\mathrm{H})\right]\right.$ or $[\mathrm{RhCo}(\mathrm{H})])$ followed by carbocyclization in the same manner as that shown in Scheme 2. The subsequent carbon monoxide insertion to III gives acyl-[M] complex intermediate IV, and the carbocyclization of IV yields bicyclic intermediate \mathbf{V}. The β-hydride elimination of \mathbf{V} affords bicyclic diene-[M]H complex VI and/or bicyclic diene VII. The regioselective addition of [M]H species to the olefin moiety of VI in the less hindered side gives intermediate IX, whereas the addition of $[M] H$ species to VII affords intermediate VIII. These β-hydride eliminations and additions of $[\mathrm{M}] \mathrm{H}$ species are potentially reversible processes; that is, IX, VI, V, VII, and VIII can be in equilibrium. The reductive elimination of the $\mathrm{R}_{3} \mathrm{Si}-[\mathrm{M}]$ species from IX by the action of another molecule of the hydrosilane affords product B. The β-hydride elimination of VIII gives product \mathbf{C}. This process is observed only when X is nitrogen, that is, $\mathrm{X}=\mathrm{R}-\mathrm{N}$, forming a pyrrole, which provides a stable heteroaromatic ring system. However, it appears that energy gain by forming a furan is not large enough to promote this type of β-elimination. On the other hand, \mathbf{V} is converted to \mathbf{X} through the $1,3-[\mathrm{M}]$ shift, and the subsequent reductive elimination affords product \mathbf{A}.

Further study on the applications of the $\mathrm{SiCaC}-\mathrm{HS}$ and SiCaB reactions to organic syntheses is actively underway.

Experimental Section

General Method. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY, NOSY, and HETCOR NMR spectra were recorded on a Bruker AC-250 or Gemini 2300 and referenced to CDCl_{3} as the internal standard. The IR spectra were measured with a Perkin-Elmer 1600 FT-IR spectrophotometer with a Hewlett-Packard 7470A plotter using samples as neat oils or as KBr disks. High-resolution mass spectra were performed by the Mass Spectrometry Facility at University of California at Riverside. Analytical gas chromatography was performed with a Hewlett-Packard 5890 Series II gas chromatograph (FID) with a Hewlett-Packard HP 3396A
integrator using either a 15 mJ J\&W DB-1, a 30 m J\&W DB-17, or a $25 \mathrm{~m} 3 \%$ OV-101 capillary column. Elemental analyses were performed at M-H-W Laboratories, Phoenix, AZ.

Materials. All solvents were reagent grade and distilled before use. Rhodium-cobalt mixed-metal complexes $\mathrm{Rh}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{12}$, ${ }^{\left({ }^{\mathrm{B}} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}}{ }^{-}$ $(\mathrm{CO})_{4}$, and $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ were prepared according to literature methods. ${ }^{26,27}$ Acetylacetonatorhodium dicarbonyl, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$, was obtained from the Mitsubishi Kasei Corp. and used as received. Hydrosilanes were purchased from Aldrich Chemical Co., distilled under nitrogen, and stored over activated molecular sieves $4 \AA$. Silica gel used for chromatography, MN-Kieselgel 60, was purchased from Brinkman Instruments Inc. 1,6-Diynes were prepared by literature methods. ${ }^{28-32}$ 4-Acetoxymethylhepta-1,6-diyne was prepared through the reduction of 4-carbethoxyhepta-1,6-diyne ${ }^{29}$ with LiAlH_{4} in ether, followed by acetylation with acetic anhydride in the presence of pyridine.

General Procedure for the Silylcarbocyclization-Hydrosilylation of 1,6-Diynes. A typical procedure is described for the reaction of benzyldipropargylamine (1a). To a 25 mL Pyrex round-bottom flask containing ($\left.{ }^{\mathrm{B}} \mathrm{BuNC}\right)_{4} \mathrm{RhCo}(\mathrm{CO})_{4}(11.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and a magnetic stir bar in toluene (15 mL) was added $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}$ ($464 \mathrm{mg}, 4.0 \mathrm{mmol}$) via a syringe under carbon monoxide atmosphere. A solution of benzyldipropargylamine (1a) ($464 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 5 mL of toluene was added, and the reaction mixture was allowed to stir at $65^{\circ} \mathrm{C}$ under ambient pressure of carbon monoxide for $8-10 \mathrm{~h}$. The crude product was obtained after evaporation of the solvent under reduced pressure, and the mixture was submitted to GC and TLC analysis. The product was purified by flash chromatography on silica gel with mixture solvent of hexane/EtOAc to give $\mathbf{3 a}(220 \mathrm{mg}, 53 \%$ yield) and $\mathbf{4 a}(58 \mathrm{mg}, 14 \%$ yield).

1-Benzyl-3-(tert-butyldimethylsilylmethylene)-4-(tert-butyldimethylsilylmethyl)pyrrolidine (3a-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.07-0.05(\mathrm{~m}, 12 \mathrm{H}), 0.55(\mathrm{dd}, J=14.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.87$ (br s, 18 H), $2.00(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H})$, $3.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74-3.52(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$ $7.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.9,-4.8,16.1,16.7,17.3,26.5$, 26.6, 42.3, 59.2, 60.8, 61.9, 113.5, 127.0, 128.2, 128.6, 138.7, 165.3; IR (neat) $1630 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right)$ 416.3168 , found $416.3186(\Delta=-4.1 \mathrm{ppm})$.

1-Benzyl-3-(triethylsilylmethylene)-4-(triethylsilylmethyl)pyrrolidine (3a-TES): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.53(\mathrm{~m}, 14$ $\mathrm{H}), 0.90(\mathrm{~m}, 18 \mathrm{H}), 1.99(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1$ H), $3.55(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=12.8,1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.9,4.1,7.4$, 7.5, 15.2, 42.0, 59.2, 60.8, 61.8, 112.7, 126.9, 128.2, 128.8, 138.7, 165.5; IR (neat) $1630 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right)$ 416.3168, found $416.3155(\Delta=+3.3 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{45}{ }^{-}$ $\mathrm{NSi}_{2}: \mathrm{C}, 72.21 ; \mathrm{H}, 10.91 ; \mathrm{N}, 3.37$. Found: C, 72.43; H, 10.87; N, 3.37.

1-n-Hexyl-3-(triethylsilylmethylene)-4-(triethylsilylmethyl)pyrrolidine (3b-TES): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.44-0.66$ $(\mathrm{m}, 14 \mathrm{H}), 0.86-0.98(\mathrm{~m}, 23 \mathrm{H}), 1.29(\mathrm{~m}, 7 \mathrm{H}), 2.38-2.51(\mathrm{~m}, 2 \mathrm{H})$, $2.60-2.89(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.3,3.8,4.1,7.5,14.0,14.9,22.5,22.6,26.3$, 28.6, 31.9, 41.9, 57.1, 59.4, 112.3, 165.4; IR (neat) $1629 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right) 410.3638$, found $410.3621(\Delta=+4.2$ ppm).

1-Allyl-3-(tert-butyldimethylsilylmethylene)-4-(tert-butyldimethylsilylmethyl)pyrrolidine (3c-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.02(\mathrm{~m}, 12 \mathrm{H}), 0.47(\mathrm{dd}, J=14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{br} \mathrm{s}, 18 \mathrm{H})$,

[^4]$1.89(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 5.30$ $(\mathrm{s}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-6.0,-4.9,-4.7,16.8$, $26.4,26.5,42.2,59.5,61.6,113.5,117.0,135.6,165.0$; IR (neat) 1631 cm^{-1}; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right) 366.3012$, found $366.3003(\Delta=+2.5 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{NSi}_{2}$: C, 68.96; H, 11.85; N, 3.83. Found: C, 68.77; H, 11.70; N, 3.83.

1-Allyl-3-(triethylsilylmethylene)-4-(triethylsilylmethyl)pyrrolidine (3c-TES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.50(\mathrm{~m}, 14 \mathrm{H})$, $0.84(\mathrm{~m}, 18 \mathrm{H}), 1.83(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J$ $=14.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ $(\mathrm{dd}, J=10.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=12.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.8,4.0,7.4$, 7.5, 15.0, 26.7, 42.0, 59.0, 59.2, 112.7, 117.0, 135.6, 165.2; IR (neat) $1650,1630 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right) 366.3012$, found 366.3020 ($\Delta=-2.1 \mathrm{ppm})$.

1-Benzyl-3,4-bis(tert-butyldimethylsilylmethyl)-3-pyrroline (4aTBS): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.42(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 18$ H), $1.42(\mathrm{~s}, 4 \mathrm{H}), 3.34(\mathrm{~s}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3,12.5,16.7,26.4,60.9,64.8,126.7,127.1,128.2$, 128.6, 139.8; IR (neat) $1684 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NSi}_{2}$: C, 72.21 ; H, 10.91; N, 3.37. Found: C, 72.39; H, 10.86; N, 3.54.

1-Benzyl-3,4-bis(triethylsilylmethyl)-3-pyrroline (4a-TES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.52(\mathrm{q}, J=7.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.93(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 18 \mathrm{H}), 1.41(\mathrm{~s}, 4 \mathrm{H}), 3.34(\mathrm{~s}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.25$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.8,13.8,16.1,61.3,65.1,127.4,128.2$, 128.7, 128.9, 141.2. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NSi}_{2}: \mathrm{C}, 72.21 ; \mathrm{H}, 10.91$; N, 3.37. Found: C, 72.19; H, 10.83; N, 3.21.

3,4-Bis(triethylsilylmethyl)-1-n-hexyl-3-pyrroline (4b-TES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.50(\mathrm{q}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}), 0.94(\mathrm{~m}$, $21 \mathrm{H}), 1.27(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.8,13.8,16.1,22.6$, 26.5, 27.8, 28.5, 31.6, 43.7, 48.9, 128.5; IR (neat) $1673 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{NSi}_{2}\left(\mathrm{MH}^{+}\right) 410.3638$, found $410.3636(\Delta=+0.6$ ppm).

1-Allyl-3,4-bis(tert-butyldimethylsilylmethyl)-3-pyrroline (4cTES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 12 \mathrm{H}), 0.87(\mathrm{~s}, 18$ $\mathrm{H}), 1.40(\mathrm{~s}, 4 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 4 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3,12.5,16.7,26.4,59.6,64.5,116.5$, $126.9,136.4$; IR (neat) $1680 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NSi}_{2}$ $\left(\mathrm{MH}^{+}\right) 366.3012$, found $366.3000(\Delta=+0.6 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{~N}_{1} \mathrm{Si}_{2}$: C, 68.96; H, 11.85; N, 3.83. Found: C, 68.70; H, 11.59; N, 4.00.

Isolation of 1-n-Hexyl-3-(tert-butyldimethylsilylmethyl)-4-methylenepyrrolidine ($2 \mathrm{~b}-\mathrm{TBS}$) and 1-n-Hexyl-3-(tert-butyldimethyl-silylmethyl)-4-methylpyrrole ($\mathbf{5 b}-\mathbf{T B S}$). To a 50 mL round-bottom flask equipped with a rubber septum, a stirring bar, and a needle connected to a silicone oil bubbler, containing $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(29.2$ $\mathrm{mg}, 0.113 \mathrm{mmol})$, were added toluene $(10 \mathrm{~mL})$ and $\mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}(522$ $\mathrm{mg}, 4.5 \mathrm{mmol}$) via syringe. Carbon monoxide was introduced to the mixture and allowed to flush the system for 5 min , and a solution of $\mathbf{1}(0.995 \mathrm{~g}, 5.62 \mathrm{mmol})$ in toluene $(8 \mathrm{~mL})$ was added to the mixture via syringe. The mixture was then heated at $65^{\circ} \mathrm{C}$ with stirring overnight. The reaction mixture was cooled to room temperature, and the solvent and other volatile materials were removed in vacuo. The residue was submitted to column chromatography on silica gel using hexane/EtOAc (16:1) as the eluant to afford 2b-TBS (286 mg, 17\% yield) and 5b-TBS ($563 \mathrm{mg}, 34 \%$ yield) as yellow oils.

2b-TBS: pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.89$ (br s, 12 H) , $1.21-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 2 H), 3.32 (br s, 4 H), 5.04 (s, 1 H), 5.37 (s, 1 H), 5.53 (s, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.6,14.1,17.1,22.6,26.3,27.2,28.2,31.8,56.7$, $61.4,64.8,108.7,118.9,144.5,153.5$; IR (neat) $1610 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NSi}\left(\mathrm{MH}^{+}\right) 294.2617$, found $294.2618\left(\mathrm{MH}^{+}\right)(\Delta$ $=+0.3 \mathrm{ppm})$. The stereochemistry of $\mathbf{2 b} \mathbf{b}$-TBS was unambiguously assigned on the basis of NOESY and 1D difference NOE NMR analyses.

1-n-Hexyl-3-(tert-butyldimethylsilylmethyl)-4-methylpyrrole (5b-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{br} \mathrm{s}, 14 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$
$\delta-6.6,-6.4,14.0,18.0,22.5,26.3,27.0,31.4,31.9,39.6,44.2,49.8$, $112.6,113.8,120.0,124.8$; IR (neat) $1724 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NSi}\left(\mathrm{MH}^{+}\right) 294.2617$, found $\left(\mathrm{MH}^{+}\right) 294.2637(\Delta=-6.8 \mathrm{ppm})$.

Control Experiment: Hydrosilylation of 1-n-Hexyl-3-(tert-butyl-dimethylsilylmethyl)-4-methylenepyrrolidine (2b-TBS). A mixture of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(0.8 \mathrm{mg}, 0.003 \mathrm{mmol}), \mathrm{HSiMe}_{2} \mathrm{Bu}^{\mathrm{t}}(69.6 \mathrm{mg}, 0.61$ $\mathrm{mmol})$, and $\mathbf{1 b}(1.0 \mathrm{mg}, 0.004 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ in a 25 mL reaction vessel was flushed with CO and heated at $65^{\circ} \mathrm{C}$ for 3 h with stirring under CO. To this mixture was added a solution of bis (exomethylene)pyrrolidine ($\mathbf{2 b}$-TBS) ($45 \mathrm{mg}, 0.153 \mathrm{mmol}$) in toluene (1 mL) via syringe, and the resulting solution was heated at $65^{\circ} \mathrm{C}$ for 18 h with stirring. The reaction mixture was cooled to room temperature, and the solvent and other volatile materials were removed in vacuo. The residue was submitted to column chromatography on silica gel using hexane/EtOAc (16:1) as the eluant to afford 4b-TBS (33.2 mg , 54%) and $\mathbf{5 b}$-TBS ($7.6 \mathrm{mg}, 17 \%$) as pale yellow oils.

3-(tert-Butyldimethylsilylmethylidene)-4-(tert-butyldimethylsilylmethyl)tetrahydrofuran (7): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.03$ $(\mathrm{s}, 6 \mathrm{H}), 0.10(\mathrm{~m}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 18 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$, 4.39-4.67 (m, 4 H$), 6.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-7.7,-7.6$, $-4.9,-4.7,16.9,19.9,22.7,27.7,28.0,46.9,49.9,122.9,158.9$; IR $1640 \mathrm{~cm}^{-1}$; GC-MS (EI) 326 (M+).

1,2-Bis(tert-butyldimethylsilylmethyl)-4,4-dicarbethoxycyclopent-1-ene (9): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.53(\mathrm{~s}, 12 \mathrm{H}), 0.91$ $(\mathrm{s}, 18 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 4 \mathrm{H}), 2.82(\mathrm{~s}, 4 \mathrm{H}), 4.17$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.2,16.6,26.4,27.1,38.9$, 45.5, 61.3, 127.0, 173.1; IR (neat) 1732, $1623 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right) 469.3169$, found 469.3177 ($\Delta=-0.4 \mathrm{ppm}$).

General Procedure for the Silylcarbobicyclization of 1,6-Diynes. A typical procedure is described for the silylcarbobicyclization of benzyldipropargylamine (1a). In a 25 mL Pyrex round-bottom flask containing a magnetic spinning bar and $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(5.2 \mathrm{mg}, 0.02$ mmol) under CO atmosphere was added a solution of $\mathrm{HSiEt}_{3}(186 \mathrm{mg}$, $1.6 \mathrm{mmol})$ and benzyldipropargylamine (1a) $(183 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 15 mL of toluene. The reaction vessel was placed in a 300 mL stainless steel autoclave and charged with 10 atm of CO. Carbon monoxide was released slowly, and this process was repeated twice more. The CO pressure was then adjusted to 50 atm . The reaction mixture was stirred magnetically at $65^{\circ} \mathrm{C}$ and 50 atm of CO for 10 h . The autoclave was cooled in an ice bath, CO was carefully released, and the reaction mixture was submitted to GC and TLC analyses. After evaporation of the solvent under reduced pressure, the crude product was immediately submitted to flash chromatography on silica gel (hexane/ $\mathrm{EtOAc})$ to afford 10a-TES (208 mg, 64% yield) and 11a-TES (6.6 $\mathrm{mg}, 2 \%$ yield).

7-Benzyl-2-(triethylsilyl)-7-azabicyclo[3.3.0]octa-5,8-dien-3-one (10aTES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H})$, $0.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 3.24(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, $6.50(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.3,7.3,39.7$, $43.0,53.5,112.8,114.4,121.0,124.3,126.6,127.6,128.7,220.1$; IR (neat) $1725,1682 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ONSi}: \mathrm{C}, 73.79 ; \mathrm{H}$, 8.36; N, 4.30. Found: C, 73.59; H, 8.15; N, 4.33.

7-Benzyl-2-(tert-butyldimethylsilyl)-7-azabicyclo[3.3.0]octa-5,8-dien-3-one (10a-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 3$ H), $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1$ $\mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-6.3$, $-6.7,18.1,27.0,39.6,44.3,53.5,113.3,114.3,120.8,126.6,126.7$, 127.6, 128.7, 138.7, 220.0; IR (neat) 1725, $1689 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NOSi}\left(\mathrm{MH}^{+}\right)$326.1940, found $326.1939(\Delta=+0.4$ ppm). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ONSi}: \mathrm{C}, 73.79 ; \mathrm{H}, 8.36$; N, 4.30. Found: C, 73.83; H, 8.49; N, 4.26.

7-n-Hexyl-2-(triethylsilyl)-7-azabicyclo[3.3.0]octa-5,8-dien-3one (10b-TES): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.64$ ($\mathrm{q}, J=7.6$ $\mathrm{Hz}, 6 \mathrm{H}), 0.85-0.95(\mathrm{~m}, 5 \mathrm{H}), 1.27(\mathrm{~m}, 9 \mathrm{H}), 1.67-2.10(\mathrm{~m}, 9 \mathrm{H})$, $3.83(\mathrm{t}, J=7.0,2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.3,7.2,13.9,13.9,22.4,22.5,26.3,31.4,31.9,39.7,112.1,113.5$, 120.2, 124.4, 220.7; IR (neat) $1730 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{33}$ $\operatorname{NOSi}\left(\mathrm{M}^{+}\right) 319.2331$, found $319.2340(\Delta=-2.3 \mathrm{ppm})$.

7-Allyl-2-(tert-butyldimethylsilyl)-7-azabicyclo[3.3.0]octa-5,8-dien-3-one (10c-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 3$ H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 3.24(\mathrm{bs}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2$
H), $5.13(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-6.7,-6.3,18.0,27.0,39.6,44.2,52.2,112.8,113.8$, $116.8,120.5,125.3,134.9,219.9$; IR (neat) $1725,1683 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NOSi}\left(\mathrm{M}^{+}\right) 275.1705$, found 275.1708 ($\Delta=-0.9$ ppm).

7-Benzyl-2-(tert-butyldimethylsilyl)-7-azabicyclo[3.3.0]oct-1-en-3-one (11a-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 3 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{dd}, J=10.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}$, $J=17.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=17.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{bt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.12(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.7,17.6,26.6,41.4,47.4$, $55.1,58.0,60.1,127.2,128.4,128.6,133.6,138.2,195.0,212.9$; IR (neat) $1700,1611 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ONSi}: \mathrm{C}, 73.34 ; \mathrm{H}$, 8.93; N, 4.28. Found: C, 73.12; H, 8.76; N, 4.26.

7-Benzyl-2-(triethylsilyl)-7-azabicyclo[3.3.0]oct-1-en-3-one (11aTES): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.69(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.96(\mathrm{dd}, J=10.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=17.1,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=17.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.7, 7.3, 41.2, 47.5, 54.9, 58.1, 60.1, 127.1, 128.4, 128.5, 133.2, 138.3, 194.9, 213.2; IR (neat) 1740, 1693, $1613 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \operatorname{NOSi}\left(\mathrm{M}^{+}\right) 327.2018$, found $327.2011(\Delta=+2.3 \mathrm{ppm})$.

7-Allyl-2-(tert-butyldimethylsilyl)-7-azabicyclo[3.3.0]oct-1-en-3one (11c-TBS): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.86(\mathrm{dd}, J=10.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}$, $J=17.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=17.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=$ $18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ $(\mathrm{m}, 2 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.9,-5.8,17.4,26.5$, $26.8,41.3,47.2,54.7,57.7,58.6,117.4,133.5,134.8,194.7,212.6$; IR (neat) $1699,1613 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NOSi}\left(\mathrm{M}^{+}\right)$: 277.4852: found 277.4853 ($\Delta=-0.2 \mathrm{ppm})$.

7-Allyl-2-(triethylsilyl)-7-azabicyclo[3.3.0]oct-1-en-3-one (11cTES): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, $0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.94(\mathrm{dd}, J=10.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}$, $J=17.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=$ $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1), 3.20(\mathrm{dd}, J=\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 3.66(\mathrm{dd}, J=8.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J$ $=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dq}, J=16.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.7,7.4,41.2,47.2$, $54.4,57.9,58.7,118.2,133.0,134.4,194.6,213.2$; IR (neat) 1741 , $1698,1643 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{ONSi}: \mathrm{C}, 69.26 ; \mathrm{H}, 9.81$; N, 5.05. Found: C, 69.50; H, 9.56; N, 4.91.

7-Benzyl-4-(triethylsilyl)-7-azabicyclo[3.3.0]oct-1-en-3-one (12aTES): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.62(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 9 \mathrm{H}), 2.27(\mathrm{dd}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.07(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{bt}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.8,7.5$, 42.3, 49.3, 53.0, 57.0, 60.1, 124.3, 127.3, 128.5, 128.6, 138.2, 183.2, 211.4; IR (neat) $1739,1707,1691 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29}$ ONSi $\left(\mathrm{M}^{+}\right) 327.2018$, found $327.2013(\Delta=+1.7 \mathrm{ppm})$.

7-Benzyl-2-(tert-butyldimethylsilyl)-7-azabicyclo[3.3.0]oct- $\boldsymbol{\Delta}^{\mathbf{1 , 5}}$-en-3-one (13a-TBS): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 1.0$ (s, 9 H$), 2.82(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.6(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H})$, $7.2-7.3(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.85,-5.67,26.8,42.4(\mathrm{C} 4)$, 47.2 (C2), 57.8 (C6 or C8), 58.9 (C8 or C6), 60.5 (C9), 127.1, 128.4, 128.5, 134 (C5), 138 (ipso-C), 142 (C1), 218 (C3); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ONSi}\left(\mathrm{M}^{+}\right) 327.2018$, found $327.2014(\Delta=+0.40 \mathrm{ppm})$.

2-(tert-Butyldimethylsilyl)-7-oxabicyclo[3.3.0]oct-1-en-3-one (14): pale yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{~s}, 3 \mathrm{H}), 1.00$ $(\mathrm{s}, 9 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta-7.8,-6.2,18.7,27.6,37.7,46.8,66.3,75.4,122.9,190.1,209.1$; IR (neat) $1741,1701 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right)$ 238.1388 , found $238.1389(\Delta=-3.4 \mathrm{ppm})$.

2-(tert-Butyldimethylsilyl)-7-oxabicyclo[3.3.0]oct- $\Delta^{1,5}$-en-3-one (15): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{~s}, 3 \mathrm{H}), 0.88$ $(\mathrm{s}, 9 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.9,-5.8,17.7,26.7,41.4,46.2,72.8,73.3,133.5,140.9$,
216.7; IR (neat) $1734,1712 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{MH}^{+}\right) 239.1467$, found $239.1468(\Delta=-0.3 \mathrm{ppm})$.

2-(tert-Butyldimethylsilyl)-7,7'-dicarbethoxybicyclo[3.3.0]oct- $\Delta^{1,5}$ en-3-one (16a): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 3 \mathrm{H})$, $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$, $2.77(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.8,-5.7,14.0,17.7,26.7,39.2,40.4,43.3,47.9,61.1$, $61.7,133.9,140.9,171.9,217.7$; IR (neat) $1731,1714,1664 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$381.2097, found 381.2103 $(\Delta=-1.5 \mathrm{ppm})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 63.12 ; \mathrm{H}, 8.48$. Found: C, 63.30; H, 8.55.

2-(tert-Butyldimethylsilyl)-7,7-dicarbethoxybicyclo[3.3.0]oct-1-en-3-one (17a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.074(\mathrm{~s}, 3 \mathrm{H}), 0.090(\mathrm{~s}, 3 \mathrm{H}), 0.082$ $(\mathrm{s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.64(\mathrm{dd}, J=12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{CH}), 2.05$ (dd, $J=17.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.55(\mathrm{dd}, J=17.5,6.6$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.75(\mathrm{dd}, J=12.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.98(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{CH}), 3.35\left(\mathrm{bs}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.79,-5.70,15.16,17.42,26.50$, 36.67 (C8), 38.70 (C-6), 43.00 (C4), 46.44 (C5), 60.62 (C7), 61.90, 134.77 (C2), 170.92, 171.52, 193.97 (C1), 212.89 (C3). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{SiO}_{5}$: C 62.96; H, 8.72. Found: C, $63.06 ; \mathrm{H}, 8.64$.

2-(tert-Butyldimethylsilyl)-7-carbethoxy-7-methylbicyclo[3.3.0]-oct- $\boldsymbol{\Delta}^{\mathbf{1 , 5}}$-en-3-one (16b). Isomer $A:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.05$ (s, 3 $\mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.2(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, J$ $=18 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 5 \mathrm{H}), 4.22(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. Isomer B: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, J=18 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 5 \mathrm{H}), 4.20(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(tert-Butyldimethylsilyl)-7-carbethoxy-7-methylbicyclo[3.3.0]oct-1-en-3-one (17b). Isomer $A:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.21$ (s, 3 H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 1.28(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{C}-\mathrm{Me}), 2.02(\mathrm{dd}, J=17.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$, 4-CH), $2.48(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 2.60(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{CH}), 2.66(\mathrm{dd}, J=12.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.06(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{CH}), 3.37(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 4.19(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.46,-5.29,14.17,17.55,26.34$ (Me-C7), 26.64, 40.61 (C8), 43.19 (C6), 43.37 (C4), 47.25 (C5), 50.69 (C7), 61.17, 134.05 (C2), 177.35, 197.06 (C1), 213.68 (C3); MS, $m / z(\%) 277\left(\mathrm{M}^{+}\right.$ - OEt, 26.8), 265, ($\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}, 56.3$), 191 (100), 103 (12.5), 75 (70.2). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{SiO}_{3}$: C67.03; H, 9.37. Found: C, 66.81; H, 9.47. Isomer $B:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.86$ $(\mathrm{s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{C}-\mathrm{Me}), 1.65(\mathrm{t}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.08(\mathrm{dd}, J=17.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.09$ (dd, $J=12.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.49(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH})$, $2.60(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.11(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}), 3.26(\mathrm{~d}$, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 4.14(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta-5.47,-5.25,14.17,17.55,26.08$ (Me-C7), 26.64, 40.49 (C8), 42.18 (C6), 43.31 (C4), 46.04 (C5), 49.94 (C7), 60.95, 134.02 (C2), 176.93, 196.37 (C1), 213.39 (C3); MS, $m / z(\%) 277$ (M^{+}- OEt, 12.6), 265, $\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}, 24.7\right), 191$ (100), 103 (7.2), 75 (40). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{SiO}_{3}$: C, 67.03; H, 9.37. Found: C, 66.87; H, 9.40.

2-tert-(Butyldimethylsilyl)-7-carbethoxybicyclo[3.3.0]oct- $\boldsymbol{\Delta}^{\mathbf{1 , 5}}$-en-2-one (16c). Isomer $A:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3$ H), $0.87(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.72(\mathrm{~m}, 3$ H), $2.81(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{dt}, J=15 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1$
$\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-6.67,-5.73,14.26,26.69,34.39$, 35.58, 43.46, 48.01, 60.49, 60.71. Isomer B: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.02$ $(\mathrm{s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.72(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{dt}, J=15 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{SiO}_{3}: \mathrm{C}, 66.19$; H, 9.15. Found: C, $65.92 ; \mathrm{H}, 8.93$ (a $1: 1$ mixture of diastereomers).

2-(tert-Butyldimethylsilyl)-7-endo-carbethoxybicyclo[3.3.0]oct-1-en-3-one (17c-A): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H})$, $0.80(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{dd}, J=11.9,11.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{CH}), 2.10(\mathrm{dd}, J=17.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.45$ (ddd, $J=$ $11.9,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.55(\mathrm{dd}, J=17.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH})$, $2.90\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 2.95(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}), 3.2(\mathrm{~m}, 1 \mathrm{H}$, $7-\mathrm{CH}), 4.15(\mathrm{q}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.56,-5.39$, $14.20,17.63,26.63,31.57$ (C8), 35.26 (C6), 43.10 (C4), 44.29 (C7), 48.37 (C5), 60.84, 126.94 (C2), 134.61 (C1), 174.44, 196.24 (C3), 213.50 (C9). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{SiO}_{3}: \mathrm{C}, 66.19 ; \mathrm{H}, 9.15$. Found: C, 66.00; H, 9.38.

2-(tert-Butyldimethylsilyl)-7-exo-carbethoxy[3.3.0]oct-1-en-3one (17c-B): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{ddd}, J=12.6,9.2,9.2 \mathrm{~Hz}$, $6-\mathrm{CH}), 1.99(\mathrm{dd}, J=17.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.45(\mathrm{ddd}, J=12.6$, 7.8, 1.1 Hz, $1 \mathrm{H}, 6-\mathrm{CH}), 2.55(\mathrm{dd}, J=17.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.87$ $(\mathrm{dd}, J=18.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 3.00(\mathrm{dd}, J=18.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{CH}), 3.01(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}), 3.18$ (dddd, $J=9.2,9.2,4.1,1.1 \mathrm{~Hz}, 1$ $\mathrm{H}, 7-\mathrm{CH}), 4.15(\mathrm{q}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.49,-5.31$, $14.18,17.56,26.50,31.78$ (C8), 34.20 (C6), 43.23 (C4), 43.42 (C7), 45.96 (C5), 60.76, 134.11 (C2), 175.51, 196.96 (C1), 213.75 (C3). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{SiO}_{3}$: C, 66.19; H, 9.15. Found: C, 66.30; H, 9.09 .

7-(Acetoxymethyl)-2-(tert-butyldimethylsilyl)bicyclo[3.3.0]oct-$\Delta^{1,5}$-en-3-one (16d). Isomer A : pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.87(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{dd}, J=12.1$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.7,-5.6,17.8,21.0,26.7,33.8$, $35.2,38.4,43.6,48.2,68.1,135.5,142.4,171.2,218.8$; IR (neat) 29482854, 1735, $1654 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right)$ 308.1808, found $308.1809(\Delta=-0.1 \mathrm{ppm})$. Isomer B : pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 2.04$ $(\mathrm{s}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.92(\mathrm{~m}, 4 \mathrm{H}), 4.07$ (dd, $J=12.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.5,-5.3,17.7,20.9$, $26.6,32.1,34.8,39.3,43.2,48.2,53.1,67.2,129.9,134.3,171.1,197.7$; IR (neat) $3047,1741,1692,1644,1605 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right) 308.1808$, found $308.1804(\Delta=+1.2 \mathrm{ppm})$.

Acknowledgment. This research was supported by grants from the National Institutes of Health (NIGMS) and the National Science Foundation. Generous support from Mitsubishi Chemical Corp. is gratefully acknowledged. We thank Dr. Fang Liu for her assistance in the determination of stereochemistry using 1D difference NOE and 2D NMR techniques. We acknowledge the university NMR facility at Stony Brook, which was supported by a grant from National Science Foundation (CHE 9413510).

JA980907L

[^0]: (1) See, for example: (a) Negishi, E. In Comprehensive Organic Synthesis; Trost, B. M. Ed.; Pergamon: Oxford, 1991; Vol. 5, pp 11631184. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081. (c) Tamao, K.; Kobayashi, K.; Ito, Y. Synlett 1992, 539. (d) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (e) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (f) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (f) Chatani, N.; Murai, S. Synlett 1996, 414.
 (2) Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. Organometallics 1991, 10, 38.
 (3) Ojima, I.; Donovan, R. J.; Ingallina, P.; Clos, N.; Shay, W. R.; Eguchi, M.; Zeng, Q.; Korda, A. J. Cluster Sci. 1992, 3, 423.
 (4) Eguchi, M.; Zeng, Q.; Korda, A.; Ojima, I. Tetrahedron Lett. 1993, 34, 915.
 (5) Ojima, I.; Donovan, R. J.; Eguchi, M.; Shay, W. R.; Ingallina, P.; Korda, A.; Zeng, Q. Tetrahedron 1993, 49, 5431.
 (6) Ojima, I.; Vidal, E.; Tzamarioudaki, M.; Matsuda, I. J. Am. Chem. Soc. 1995, 117, 6797.
 (7) For contributions from other laboratories, see: (a) Matsuda, I.; Ogiso, A.; Sato, S.; Izumi, Y. J. Am. Chem. Soc. 1989, 111, 2332. (b) Matsuda, I.; Ogiso, A.; Sato, S. J. Am. Chem. Soc. 1990, 112, 6120. (c) Matsuda, I.; Sakakibara, J.; Nagashima, H. Tetrahedron Lett. 1991, 32, 7431. (d) Matsuda, I.; Sakakibara, J.; Inoue, H.; Nagashima, H. Tetrahedron Lett. 1992, 33, 5799. (e) Doyle, M. P.; Shanklin, M. S. Organometallics 1993, 12, 11. (f) Doyle, M. P.; Shanklin, M. S. Organometallics 1994, 13, 1081. (g) Wright, M. E.; Cochran, B. B. J. Am. Chem. Soc. 1993, 115, 2059. (h) Zhou, J. Q.; Alper, H. Organometallics 1994, 13, 1586. (i) Monteil, F.; Matsuda, I.; Alper, H. J. Am. Chem. Soc. 1995, 117, 4419.
 (8) Ojima, I.; Machnik, D.; Donovan, R. J.; Mneimne, O. Inorg. Chim. Acta 1996, 251, 299.
 (9) Ojima, I.; Donovan, R. J.; Shay, W. R. J. Am. Chem. Soc. 1992, 114, 6580.
 (10) Ojima, I.; Tzamarioudaki, M.; Tsai, C.-Y. J. Am. Chem. Soc. 1994, 116, 3643.
 (11) (a) Ojima, I.; Fracchiolla, D. A.; Donovan, R. J.; Banerji, P. J. Org. Chem. 1994, 59, 7594. (b) Matsuda, I.; Ishibashi, H.; Ii, N. Tetrahedron Lett. 1995, 36, 241.
 (12) Ojima, I.; McCullagh, J. V.; Shay, W. R. J. Organomet. Chem. 1996, 521, 421.

[^1]: (14) In ref 9, the structures of product 4c-TES and 11c-TES were erroneously assigned to 1-allyl-3-(Z-triethylsilylmethylene)-5-(2-triethyl-silylethyl)piperidin-4-one and 7-allyl-2-(triethylsilyl)-7-azabicyclo[3.3.1]non-1-ene-3,9-dione, respectively. These misassignments were caused by unfortunate mistakes at the M-H-W Laboratories for the elemental analyses of these two compounds. The erroneous elemental analyses data clearly supported the inclusion of carbon monoxide in these molecules, which played an essential role in the assignments of these incorrect structures. Unfortunately, ${ }^{1} \mathrm{H}$ NMR data were consistent with the incorrect structures and ${ }^{13} \mathrm{C}$ NMR data appeared to be consistent as well because of the unusually large chemical shift of $\mathrm{C}-1$.

[^2]: (15) For a preliminary communication, see ref 11a.
 (16) Pauson, P. L. Tetrahedron 1985, 41, 5855.
 (17) Krafft, M. E.; Romero, R. H.; Scott, I. L. J. Org. Chem. 1992, 57, 5277.
 (18) Hoye, T. R.; Suriano, J. A. J. Org. Chem. 1993, 58, 1659.

[^3]: (19) Schore, N. In Organic Reactions; Beak, P., Ed.; Wiley: New York, 1991; pp 1-90.
 (20) Magnus, P.; Exon, C.; Albaugh-Robertson, P. Tetrahedron 1985, 41, 5861.
 (21) (a) Negishi, E. Pure Appl. Chem. 1993, 64, 323 and references therein. (b) Rouset, C. J.; Swanson, D. R.; Lamaty, F.; Negishi, E. Tetrahedron Lett. 1989, 30, 5105. (c) Agnel, G.; Owczarczyk, Z.; Negishi, E. Tetrahedron Lett. 1992, 33, 1543.
 (22) Grossman, R. B.; Buchwald, S. L. J. Org. Chem. 1992, 57, 5803.
 (23) (a) Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159. (b) Lee, N. Y.; Chung, Y. K. Tetrahedron Lett. 1996, 37, 3145. (c) Pagenkopf, B. L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285.
 (24) (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 4912. (b) Hicks, F. A.; Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1996, 61, 2713. (c) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 9450. (d) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 11688.
 (25) Ihle, N. C.; Heathcock, C. H. J. Org. Chem. 1993, 58, 560.

[^4]: (26) (a) Martinenego, S.; Chini, P.; Albano, V. G.; Cariati, R. J. Organomet. Chem. 1973, 59, 379. (b) Horváth, I. T.; Bor, G.; Garland, M.; Pino, P. Organometallics 1986, 5, 1441.
 (27) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1991, 10, 3211.
 (28) Eglinton, G.; Galbraith, A. R. J. Chem. Soc. 1959, 889.
 (29) Krapcho, A. P.; Weimaster, J. F.; Eldridge, J. M.; Jahngen, E. G.; Lovery, A. J.; Stephens, W. P. J. Org. Chem. 1978, 43, 138.
 (30) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268.
 (31) Ben-Effraim, D. A. Tetrahedron 1973, 25, 4041.
 (32) Epsztein, R. Bull. Soc. Chim. Fr. 1956, 158.

